Competing on Speed

Emiliano S. Pagnotta & Thomas Philippon

NYU Stern, Dept. of Finance

CAFIN. April 25th
1. Speed Choices

Some Examples

<table>
<thead>
<tr>
<th>Market</th>
<th>Slow Venues</th>
<th>Fast Venues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equities</td>
<td>Crossing Network</td>
<td>Direct access to exchange, co-location</td>
</tr>
<tr>
<td>FX</td>
<td>OTC dealer/bank</td>
<td>Currenex, EBS, Reuters, Futures</td>
</tr>
<tr>
<td>Bonds</td>
<td>OTC dealer/bank</td>
<td>Aladdin, eSpeed</td>
</tr>
<tr>
<td>Swaps</td>
<td>OTC dealer/bank</td>
<td>Bloomberg, MarketAxxes</td>
</tr>
<tr>
<td>Funds</td>
<td>Mutual Funds</td>
<td>ETF, Index futures</td>
</tr>
<tr>
<td>Inter-City</td>
<td>Internet</td>
<td>Microwaves</td>
</tr>
</tbody>
</table>
2. Fragmentation

[Diagram showing 1-Herfindahl–Hirschman Index for various stock exchanges from 2004 to 2012, with a color legend indicating different years.]
Issue & Analytical Approach

Financial Markets Organization

- Why do venues compete on speed?
- Both speed and fragmentation ↗. Is there a relationship?

Normative:
- Social value of speed investments?
- Is fragmentation socially desirable?
- Optimal regulation?

Approach:
- Key: all investors value speed, but not equally ⇒ Speed acts as (vertical) differentiation factor
- Emphasizes liquidity and gains from trade (no asymmetric info)

\[t = 0 \text{ to } \infty \]
Issue & Analytical Approach

Financial Markets Organization

• Why do venues compete on speed?
• Both speed and fragmentation \(\uparrow \). Is there a relationship?

Normative:

• Social value of speed investments?
• Is fragmentation socially desirable?
• Optimal regulation?

Approach:

• Key: all investors value speed, but not equally \(\Rightarrow \) Speed acts as (vertical) differentiation factor
• Emphasizes liquidity and gains from trade (no asymmetric info)
Issue & Analytical Approach

Financial Markets Organization

- Why do venues compete on speed?
- Both speed and fragmentation \uparrow. Is there a relationship?

Normative:

- Social value of speed investments?
- Is fragmentation socially desirable?
- Optimal regulation?

Approach:

- Key: all investors value speed, but not equally \Rightarrow Speed acts as (vertical) differentiation factor
- Emphasizes liquidity and gains from trade (no asymmetric info)
Issue & Analytical Approach

Financial Markets Organization

- Why do venues compete on speed?
- Both speed and fragmentation\(^\uparrow\). Is there a relationship?

Normative:

- Social value of speed investments?
- Is fragmentation socially desirable?
- Optimal regulation?

Approach:

- Key: all investors value speed, but not equally \(\Rightarrow\) Speed acts as (vertical) differentiation factor
- Emphasizes liquidity and gains from trade (no asymmetric info)

 Venues: Market Structure
 Investors: Pre-trade choices
 Trading \((t = 0 \text{ to } \infty)\)

'Long-run' 'Short-run' 'day' time
Main Findings

- **Speed-Enhancing Investments**
 - Accelerate fragmentation
 - Equilibrium speeds are inefficient

- **Fragmentation:**
 - Incentivizes trading speeds
 - Enhances “market quality” (evidence in O’Hara Ye 2011) and investor participation, but not necessarily higher welfare

- **Regulations** that protect executions (*SEC’s trade-through*) distort competition, increase fragmentation, and may have *negative welfare effects*
1. Trading in one market (time 0 to ∞)

Micro foundations of Speed Demand

• Two assets: cash (yields \(r \)). Illiquid asset yields \(\mu \) per unit of time, holdings \(a \) in \([0, 1]\).

• Mass one continuum of investors. Endowment \(\bar{a} \) (also total supply). Flow utility:

\[
u_{\sigma, \epsilon_t}(a_t) = (\mu + \sigma \epsilon_t) a_t\]

• time-varying type \(\epsilon \) in \({+,-}\), times \(\sim \exp(\gamma) \), \(\Pr\{\epsilon=+\} = 1/2 \)

• fixed type \(\sigma \in [0, \bar{\sigma}] \) CDF \(G \) (can see as brokers’ “clienteles”)

• Trading:

 • Contact rate (speed) is \(\rho \) (i.e. “latency” \(\rho^{-1} \))
 • “Normalized” speed \(s \equiv \frac{\rho}{r+\gamma+\rho} \)
 • Conditional on contact, market is Walrasian
1. Trading in one market (time 0 to ∞)

Micro foundations of Speed Demand

- Two assets: cash (yields r). Illiquid asset yields μ per unit of time, holdings a in $[0,1]$.

- Mass one continuum of investors. Endowment \bar{a} (also total supply). Flow utility:

\[
u_{\sigma,\varepsilon_t}(a_t) = (\mu + \sigma \varepsilon_t) a_t\]

- Time-varying type ε in $\{+, -\}$, times $\sim \exp(\gamma)$, $\Pr\{\varepsilon = +\} = 1/2$
- Fixed type $\sigma \in [0, \bar{\sigma}]$ CDF G (can see as brokers’ “clienteles”)

- Trading:

 - Contact rate (speed) is ρ (i.e. “latency” ρ^{-1})
 - “Normalized” speed $s \equiv \frac{\rho}{r + \gamma + \rho}$
 - Conditional on contact, market is Walrasian
• **Value function** \((\sigma, \varepsilon(t))\) holding \(a\):
\[V_{\sigma,\varepsilon(t)}(a, t) = \]
\[\mathbb{E}_t \left[\int_t^T e^{-r(s-t)} u_{\sigma,\varepsilon(s)}(a) ds + e^{-r(T-t)} \left(V_{\sigma,\varepsilon(T)}(a^*_T, T) - p_T (a^*_T - a) \right) \right] \]

Flows until contact
Cont. value at time-T contact

• Optimal holding problem recursive (Lagos Rocheteau EMA 2009)

• **Supply**: \(\bar{a} \leq 1/2\) (supply is short, \(1/2\) investors have \(\varepsilon = +1\))

• **Demand**: Let \(\hat{\sigma}\) type indifferent on buying when \(\varepsilon = +1\).

 • \(a^* = 1\) when \(\varepsilon = +1\) and \(\sigma \geq \hat{\sigma}\) (’active’ investor)

 • \(a^* = 0\) when \(\varepsilon = -1\) or when \(\sigma < \hat{\sigma}\) (’small’ investor)

• **Equilibrium**: \((p, \hat{\sigma})\) solving demand system and market clearing.

• **Walrasian Case**: \(\rho \to \infty\) (+ free access)

\[p_W = \frac{1}{r} (\mu + \hat{\sigma}_W), \quad \hat{\sigma}_W = G^{-1} (1 - 2\bar{a}) \]
• **Value function** \((\sigma, \varepsilon(t))\) holding \(a\): \(V_{\sigma,\varepsilon(t)}(a, t) = \)

\[
\mathbb{E}_t \left[\int_t^T e^{-r(s-t)} u_{\sigma,\varepsilon(s)}(a) ds + e^{-r(T-t)} \left(V_{\sigma,\varepsilon(T)}(a^*_T, T) - p_T (a^*_T - a) \right) \right]
\]

- Flows until contact
- Cont. value at time-T contact

• Optimal holding problem recursive (Lagos Rocheteau EMA 2009)

• **Supply:** \(\bar{a} \leq 1/2\) (supply is short, \(1/2\) investors have \(\varepsilon = +1\))

• **Demand:** Let \(\hat{\sigma}\) type indifferent on buying when \(\varepsilon = +1\).
 - \(a^* = 1\) when \(\varepsilon = +1\) and \(\sigma \geq \hat{\sigma}\) (‘active’ investor)
 - \(a^* = 0\) when \(\varepsilon = -1\) or when \(\sigma < \hat{\sigma}\) (‘small’ investor)

• **Equilibrium:** \((p, \hat{\sigma})\) solving demand system and market clearing.

• **Walrasian Case:** \(\rho \to \infty\) (+ free access)

\[
p_W = \frac{1}{r}(\mu + \hat{\sigma}_W), \quad \hat{\sigma}_W = G^{-1}(1 - 2\bar{a})
\]
Participation value in venue with speed s:

$$W(\sigma, \hat{\sigma}, s) \equiv \frac{1}{2} \sum_{\varepsilon} V_{\sigma,\varepsilon}(\hat{a}; s); \quad \text{Autarchy: } W_{out} = \bar{a} \frac{H}{r}$$

Result: Net Participation Value with Speed s

- Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s\bar{a}\hat{\sigma}}{r} + \frac{s}{2r} \max(0; \sigma - \hat{\sigma})$$

- The value of trading is super-modular in (s, σ)

Participation Decision $[0, \bar{\sigma}] \rightarrow \{in, out\}$

- q: market access fee (membership, co-location, data feed...)
- If σ joins, enjoys $W(\sigma, \hat{\sigma}, s) - q$
 - Marginal investor $W(\hat{\sigma}, \hat{\sigma}, s) - W_{out} = q$
Participation value in venue with speed s:
$$W(\sigma, \hat{\sigma}, s) \equiv \frac{1}{2} \sum_{\varepsilon} V_{\sigma,\varepsilon}(\bar{a}; s);$$
Autarchy: $W_{out} = \bar{a} \frac{H}{r}$

Result: Net Participation Value with Speed s

- Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s\bar{a}\hat{\sigma}}{r} + \frac{s}{2r} \max(0; \sigma - \hat{\sigma})$$

- The value of trading is super-modular in (s, σ)

Participation Decision $[0, \bar{\sigma}] \rightarrow \{in, out\}$

- q: market access fee (membership, co-location, data feed...)
- If σ joins, enjoys $W(\sigma, \hat{\sigma}, s) - q$
 - Marginal investor $W(\hat{\sigma}, \hat{\sigma}, s) - W_{out} = q$
Participation value in venue with speed s:

$$W(\sigma, \hat{\sigma}, s) \equiv \frac{1}{2} \sum_{\epsilon} V_{\sigma, \epsilon}(\bar{a}; s);$$

Autarchy: $W_{out} = \overline{a} \frac{\mu}{r}$

Result: Net Participation Value with Speed s

- Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s \overline{a} \hat{\sigma}}{r} + \frac{s}{2r} \max(0; \sigma - \hat{\sigma})$$

- The value of trading is super-modular in (s, σ)

Participation Decision $[0, \overline{\sigma}] \longrightarrow \{in, out\}$

- q: market access fee (membership, co-location, data feed...)
- If σ joins, enjoys $W(\sigma, \hat{\sigma}, s) - q$
 - Marginal investor $W(\hat{\sigma}, \hat{\sigma}, s) - W_{out} = q$
Result: Trading Equilibrium with Costly Participation

\[p = \frac{\mu}{r} + \hat{\sigma} \left(\frac{r + \gamma s}{r + \gamma} \right) \]

- \(p \) constant a.s. given stationarity of \(\varepsilon \)
- Fraction of traders with mis-allocated assets = \(\frac{\gamma (1-s)}{4 \gamma + rs} \)
- With limited participation \(\hat{\sigma} > \hat{\sigma}_W = G^{-1}(1 - 2\bar{a}) \)
- Mass active traders = \(1 - G(\hat{\sigma}) \)

- Key difference wrto literature: \((\hat{\sigma}, s) \) endogenous
- How do investor characteristics, technology, competitive structure, and regulation shape market prices? (see Pagnotta 2013)
Result: Trading Equilibrium with Costly Participation

\[p = \frac{\mu}{r} + \frac{\hat{\sigma}}{r} \left(\frac{r + \gamma s}{r + \gamma} \right) \]

- \(p \) constant a.s. given stationarity of \(\varepsilon \)
- Fraction of traders with mis-allocated assets = \(\frac{\gamma (1-s)}{4 \gamma + rs} \)
- With limited participation \(\hat{\sigma} > \hat{\sigma}_W = G^{-1}(1 - 2\bar{a}) \)
- Mass active traders = \(1 - G(\hat{\sigma}) \)

- Key difference wrto literature: \((\hat{\sigma}, s) \) endogenous
- How do investor characteristics, technology, competitive structure, and regulation shape market prices? (see Pagnotta 2013)
2. Consolidated Market

\[\max_{q,s} \left\{ q \times \left[1 - G(\hat{\sigma}(q,s)) \right] - C(s) \right\} \]

- Assumption 1: \(G(\sigma) \sim 1 - \exp\left(-\frac{\sigma}{\nu}\right), \quad \nu > 0 \)
- Assumption 2: Speed cost is \(c \times \max\{0, \rho - \rho_0\} \), where \(c > 0, \rho_0 > 0 \) “default” speed
2. Consolidated Market

\[\max_{q,s} \left\{ q \times [1 - G(\hat{s}(q,s))] - C(s) \right\} \]

- **Assumption 1**: \(G(\sigma) \sim 1 - \exp(-\frac{\sigma}{v}), \ v > 0 \)
- **Assumption 2**: Speed cost is \(c \times \max\{0, \rho - \underline{\rho}\} \), where \(c > 0, \ \underline{\rho} > 0 \) “default” speed
Solution

\[\hat{\sigma}_{con} = \nu, \quad s_{con} = 1 - \sqrt{2rc \left(\gamma + r \right) \left(\frac{e}{\nu} \right)} \]

Replacing in equilibrium price:

\[p_{con} = p_{W} + \frac{\nu}{r} \left[1 + \log \left(2a \right) \right] - \frac{\nu}{r} \left(\gamma \sqrt{\frac{2rc}{(r + \gamma) \nu}} e \right) \]

Limited participation distortion \(\equiv \lim_{\rho \to \infty} [p - p_{W}] \)

Illiquidity discount \(\equiv \lim_{q \to 0} [p - p_{W}] \)

Remarks:

- Participation depends only on distribution of types
- Optimal speed level \((\rho) \) is decreasing in \(c \), increasing in \(\nu \), concave in \(\gamma \)
3. Fragmented Trading

\[s_1 = s_2 \]

J. Bertrand

\[s_1 \neq s_2 \]

E. Chamberlin
Segmentation
(multiple asset prices)

- Decision Maker
 - Slow Venue
 - Asset Market 1
 - Fast Venue
 - Asset Market 2

Protection
(single asset price)

- Decision Maker
 - Slow Venue
 - Fast Venue
 - Asset Market
Regulation on Price Protection (Reg NMS’s trade-through)

- **YES**: USA, Canada. **NO**: Europe, Japan, Australia,…
 - Example: *Buy C @ NYSE. If* \(\text{ask}_{\text{NYSE}} > \text{ask}_{\text{NASDAQ}} \), *then unless* \(\text{ask}_{\text{NYSE}} \neq \text{ask}_{\text{NASDAQ}} \), *buy order @ NYSE is routed to NASDAQ.*
 - Protection in the model: Requires \(p_1 = p_2 \) (≡ \(p_{nb} \) 'national best price')

Vertically-differentiated Competition (e.g., Shaked Sutton, EMA 1983)

- **First Stage**: Venue 1 owns \(s_2 = \bar{s} \). Venue 2 selects optimal \(s_2 \)
- **Second stage**: Given speeds, venues compete in fees
Regulation and Competition

Regulation on Price Protection (Reg NMS’s trade-through)

- **YES**: USA, Canada. **NO**: Europe, Japan, Australia,…
 - Example: *Buy C @ NYSE. If \(\text{ask}_{\text{NYSE}} > \text{ask}_{\text{NASDAQ}} \), then unless \(\text{ask}_{\text{NYSE}} \downarrow \), buy order @ NYSE is routed to NASDAQ.*
 - Protection in the model: Requires \(p_1 = p_2 \) (\(\equiv p_{nb} \) ‘national best price’)

Vertically-differentiated Competition (e.g., Shaked Sutton, EMA 1983)

- **First Stage**: Venue 1 owns \(s_2 = s \). Venue 2 selects optimal \(s_2 \)
- **Second stage**: Given speeds, venues compete in fees
Regulation on Price Protection (Reg NMS’s trade-through)

- **YES**: USA, Canada. **NO**: Europe, Japan, Australia,…
 - *Example*: Buy C @ NYSE. If \(\text{ask}_{NYSE} > \text{ask}_{NASDAQ} \), then unless \(\text{ask}_{NYSE} \leq \text{ask}_{NASDAQ} \), buy order @ NYSE is routed to NASDAQ.
 - **Protection in the model**: Requires \(p_1 = p_2 \) (\(\equiv p_{nb} \)'national best price')

Vertically-differentiated Competition (e.g., Shaked Sutton, EMA 1983)

- **First Stage**: Venue 1 owns \(s_2 = s \). Venue 2 selects optimal \(s_2 \)
- **Second stage**: Given speeds, venues compete in fees
Proposition: Price protection and competition

Price protection *increases the profits of the slow venue and decreases total active participation*

- All temporary traders will join slow market \Rightarrow demand less elastic for slow venue
- Ex-Post venue competition less intense \Rightarrow total investor participation \downarrow $(\hat{\sigma}^{prot} > \hat{\sigma}^{seg})$
Proposition: Price protection and competition

Price protection *increases the profits of the slow venue and decreases total active participation*

- All temporary traders will join slow market \Rightarrow demand less elastic for slow venue
- Ex-Post venue competition less intense \Rightarrow total investor participation \downarrow ($\hat{\sigma}_{prot} > \hat{\sigma}_{seg}$)
Entry: Endogenous Fragmentation

- Two potential entrants, simultaneous entry game (see paper)
- Entry cost κ

Proposition: Price protection and entry

Price protection helps entry and thus expands the ex-ante number of markets

Entry: Endogenous Fragmentation

- Two potential entrants, simultaneous entry game (see paper)
- Entry cost κ

Proposition: Price protection and entry

Price protection helps entry and thus expands the ex-ante number of markets

Entry: Endogenous Fragmentation

- Two potential entrants, simultaneous entry game (see paper)
- Entry cost κ

Proposition: Price protection and entry

Price protection helps entry and thus expands the ex-ante number of markets

Proposition

- Fragmented market: Participation fast venue alone is higher than monopolist case ($\hat{\sigma}_{12} < \hat{\sigma}_{con}$)
- The fast venue chooses higher speed than monopolist

Intuition: Profits vs. differentiation $s_2 > s_{con}$

- Two-way feedback: trading technologies \leftrightarrow fragmentation
- Measurable Market Quality (Liquidity, Participation, Volumes) higher under fragmentation (as reported in O’Hara Ye (2011) for U.S., Degryse et al. (2011) for Europe)
Fragmentation and Market Quality

Proposition

- Fragmented market: Participation fast venue alone is higher than monopolist case ($\hat{s}_{12} < \hat{s}_{con}$)
- The fast venue chooses higher speed than monopolist

Intuition: Profits vs. differentiation $s_2 > s_{con}$

- Two-way feedback: trading technologies \leftrightarrow fragmentation
- Measurable Market Quality (Liquidity, Participation, Volumes) higher under fragmentation (as reported in O’Hara Ye (2011) for U.S., Degryse et at. (2011) for Europe)
Regulation of...

1. **Speed investments?**
2. **Entry?**
3. **Price Protection?**

Welfare (pre-trading). i indexes venues

\[
\mathcal{W} = \sum_i \int_\sigma (W(\sigma, \hat{s}_i, s_i) - W_{out})dG(\sigma) - \sum_i (\kappa + C(s_i))
\]

Partic. gains & Allocation efficiency Entry+Speed Investment
Regulation of...

1. **Speed investments?**
2. **Entry?**
3. **Price Protection?**

Welfare (pre-trading). i indexes venues

\[
\mathcal{W} \equiv \sum_i \int_{\sigma} (\mathcal{W}(\sigma, \hat{s}_i, s_i) - \mathcal{W}_{out}) dG(\sigma) - \sum_i (\kappa + C(s_i))
\]

- Partic. gains & Allocation efficiency
- Entry+Speed Investment
Regulation of Speed

- **Regulator**: take number of venues and equilibrium pricing as given.

<table>
<thead>
<tr>
<th>Summary of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Equilibrium speed choices are inefficient</td>
</tr>
<tr>
<td>- Excessive differentiation (relaxing fee competition)</td>
</tr>
<tr>
<td>- Disparity between marginal and average investor valuation for speed (e.g., Spence 1976)</td>
</tr>
<tr>
<td>- Minimum speed standards (mss) can increase welfare</td>
</tr>
</tbody>
</table>

- Reg NMS mandate to automatize execution acted as mss
- Dodd Frank’s mandate to execute OTC assets in exchanges
Regulation of Speed

- **Regulator**: take number of venues and equilibrium pricing as given.

<table>
<thead>
<tr>
<th>Summary of Results</th>
</tr>
</thead>
</table>

 - Equilibrium speed choices are inefficient
 - Excessive differentiation (relaxing fee competition)
 - Disparity between marginal and average investor valuation for speed (e.g., Spence 1976)
 - Minimum speed standards (mss) can increase welfare

- Reg NMS mandate to automatize execution acted as mss
- Dodd Frank’s mandate to execute OTC assets in exchanges
Avg. Execution Speed NYSE in seconds (Source: SEC Rule 605)
Should Fragmentation be encouraged?

- **Regulator**: Takes post-entry strategies as given
- **Classic**: No liquidity externalities or entry costs \Rightarrow fragmentation is best

Entry

- The free-entry equilibrium can lead to excessive fragmentation
- Unlikely with only two venues
- More likely with price protection

- Intuition: business stealing and excessive differentiation
Should Fragmentation be encouraged?

- **Regulator**: Takes post-entry strategies as given
- **Classic**: No liquidity externalities or entry costs \Rightarrow fragmentation is best

Entry

- The free-entry equilibrium can lead to excessive fragmentation
- Unlikely with only two venues
- More likely with price protection

- Intuition: business stealing and excessive differentiation
Does Price Protection add Value?
U.S. Reg NMS (2007)

- Model: Affects participation, speed choices, and importantly, entry.

<table>
<thead>
<tr>
<th>Price Protection and Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry affected?</td>
</tr>
<tr>
<td>• Yes: First order effect (more participation, more speed). Sign depends on entry costs.</td>
</tr>
<tr>
<td>• No: Small negative effect (total participation ↘)</td>
</tr>
</tbody>
</table>

- Policy: Price protection effect on welfare is ambiguous (likely positive in US, likely negative in Europe in light of MiFID II)
- Remark: Rationalizes experience of U.S. markets after Reg NMS: many more markets, faster speeds.
Does Price Protection add Value?
U.S. Reg NMS (2007)

- Model: Affects participation, speed choices, and importantly, entry.

Price Protection and Welfare

Entry affected?

- Yes: First order effect (more participation, more speed). Sign depends on entry costs.
- No: Small negative effect (total participation ↓)

- **Policy:** Price protection effect on welfare is ambiguous (likely positive in US, likely negative in Europe in light of MiFID II)
- **Remark:** Rationalizes experience of U.S. markets after Reg NMS: many more markets, faster speeds.

Table II: Parameter values in Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Baseline Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate</td>
<td>r</td>
<td>2.5%</td>
</tr>
<tr>
<td>Holding cash flow</td>
<td>μ</td>
<td>2.44</td>
</tr>
<tr>
<td>Default contact rate</td>
<td>ρ</td>
<td>2.95×10^5</td>
</tr>
<tr>
<td>Short-run contact rate market 2</td>
<td>ρ_2</td>
<td>1.18×10^6</td>
</tr>
<tr>
<td>Long-run contact rate consolidated market</td>
<td>ρ_{con}</td>
<td>5.90×10^6</td>
</tr>
<tr>
<td>Switching intensity temporary types</td>
<td>γ</td>
<td>73,710</td>
</tr>
<tr>
<td>Marginal cost of speed investments</td>
<td>c</td>
<td>7.6×10^{-9}</td>
</tr>
<tr>
<td>Asset supply</td>
<td>\bar{a}</td>
<td>0.47</td>
</tr>
<tr>
<td>Average investor type (baseline value)</td>
<td>ν</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- Notes
 - Annualized rates
 - For the baseline value $\nu = 1/2$ the annual utility flow lies in $\{2.14, 2.78\}$. (private value \sim 20% of dividend)
Calibration results: Participation
(Walrasian outcome=100)

<table>
<thead>
<tr>
<th></th>
<th>Short-run (2001) (s fixed)</th>
<th>Long-run (2007) (s variable)</th>
<th>Long-run (protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidated</td>
<td>39.14</td>
<td>39.14</td>
<td>-</td>
</tr>
<tr>
<td>Slow Venue</td>
<td>36.26</td>
<td>35.80</td>
<td>33.35</td>
</tr>
<tr>
<td>Fast Venue</td>
<td>61.87</td>
<td>60.24</td>
<td>61.56</td>
</tr>
<tr>
<td>Slow + fast</td>
<td>98.12</td>
<td>96.05</td>
<td>94.90</td>
</tr>
</tbody>
</table>

Remarks:
- In the long-run speed differentiation reduces participation
- Protection reduces competition thus access fees are higher in slow venue
Calibration results: Participation

(Walrasian outcome=100)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s fixed)</td>
<td>(s variable)</td>
<td>(protection)</td>
</tr>
<tr>
<td>Consolidated</td>
<td>39.14</td>
<td>39.14</td>
<td>-</td>
</tr>
<tr>
<td>Slow Venue</td>
<td>36.26</td>
<td>35.80</td>
<td>33.35</td>
</tr>
<tr>
<td>Fast Venue</td>
<td>61.87</td>
<td>60.24</td>
<td>61.56</td>
</tr>
<tr>
<td>Slow + fast</td>
<td>98.12</td>
<td>96.05</td>
<td>94.90</td>
</tr>
</tbody>
</table>

• Remarks:
 • In the long-run speed differentiation reduces participation
 • Protection reduces competition thus access fees are higher in slow venue
Calibration results: Speed and Welfare
(Walrasian outcome=100)

<table>
<thead>
<tr>
<th></th>
<th>Short-run (s fixed)</th>
<th>Long-run (s variable)</th>
<th>Long-run (protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated</td>
<td>80.00</td>
<td>98.77</td>
<td></td>
</tr>
<tr>
<td>Fast Venue</td>
<td>94.12</td>
<td>98.95</td>
<td>98.96</td>
</tr>
<tr>
<td>Planner</td>
<td>94.12</td>
<td>99.25</td>
<td></td>
</tr>
<tr>
<td>Welfare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated</td>
<td>58.97</td>
<td>72.37</td>
<td></td>
</tr>
<tr>
<td>Slow + fast</td>
<td>92.52</td>
<td>96.12</td>
<td>95.15</td>
</tr>
<tr>
<td>Planner</td>
<td>94.22</td>
<td>98.71</td>
<td></td>
</tr>
</tbody>
</table>

- **Policy Remarks:**
 - Rational to foster fragmentation (SEC’s Reg ATS 1998)
 - Protection is suboptimal (SEC’s Reg NMS 2007)
Calibration results: Speed and Welfare
(Walrasian outcome=100)

<table>
<thead>
<tr>
<th></th>
<th>Short-run (s fixed)</th>
<th>Long-run (s variable)</th>
<th>Long-run (protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated</td>
<td>80.00</td>
<td>98.77</td>
<td></td>
</tr>
<tr>
<td>Fast Venue</td>
<td>94.12</td>
<td>98.95</td>
<td>98.96</td>
</tr>
<tr>
<td>Planner</td>
<td>94.12</td>
<td>99.25</td>
<td></td>
</tr>
<tr>
<td>Welfare</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated</td>
<td>58.97</td>
<td>72.37</td>
<td></td>
</tr>
<tr>
<td>Slow + fast</td>
<td>92.52</td>
<td>96.12</td>
<td>95.15</td>
</tr>
<tr>
<td>Planner</td>
<td>94.22</td>
<td>98.71</td>
<td></td>
</tr>
</tbody>
</table>

- **Policy Remarks:**
 - Rational to foster fragmentation (SEC’s Reg ATS 1998)
 - Protection is suboptimal (SEC’s Reg NMS 2007)
Asset prices are bad proxy for welfare

Market Structure and Asset Prices

1. \(p_{con} \leq p_{frag} \). For small frictions asset classes: \(p_{con} > p_{frag} \)
2. \(p_{con} > p_{nb} \)
3. \(p_{frag} \leq p_{nb} \). If differentiation is not too small: \(p_{frag} > p_{nb} \)

Some Empirical Implications

- When stock markets open to competition: liquidity increases but asset price level may decrease (Brazil, South Korea, Australia?)
- Do prices decrease with protection in fragmented markets? Testing: Canada 2011
- International: Fix asset features \(\Rightarrow p^{CHINA} > p^{EU} > p^{US} \)
- OTC Derivatives: liquidity effects more likely to be important (and investors typically high \(\sigma \))
A Few Related Papers

• **Search Frictions.** and asset prices: Duffie Garleanu Pedersen (2005, 2007), Weill (2007, 2008), Lagos Rocheteau (2009), Vayanos Tang (2008), ...

• **Theory of Fragmentation.** Mendelson (1987), Pagano (1989), Madhavan (1995), ...

• **Competition between exchanges.** Santos Scheinkman (2001, margins), Foucault Parlour (2000, listing fees)

• **Vertically differentiated oligopolies.** Gabsewisz and Thisse (1979), Shaked and Sutton (1982, 1983), ...
Final Remarks

- We provide a positive and normative analysis of trading speed and fragmentation in financial markets
 - Positive. Accounts for US and European experiences after Reg. NMS & MifID.
 - Testable implications for market organization, volumes, prices...
 - Normative. Several regulation insights. First normative analysis of investor protection

- Stresses poor mapping between price levels and welfare: tensions PRIMARY-SECONDARY markets
- Tractable model for regulation/policy analysis
THANKS !